
François Gelis – 2006 Strong and Electro-Weak Matter, BNL, May 2006 - p. 1

Particle production in field theories
coupled to a strong source

François Gelis
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Outline

n High energy hadrons and Color Glass Condensate

n General properties of field theories coupled
to an external source

n First moment – Average multiplicity at LO and NLO

n Generating function for the particle multiplicities

n Towards kinetic theory

u Baltz, FG, McLerran, Peshier, nucl-th/0101024
u FG, Kajantie, Lappi, hep-ph/0409058, 0508229
u FG, Venugopalan, hep-ph/0601209
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Goals

n describe the semi-hard content of nucleons and nuclei
n calculate the initial production of semi-hard particles in

high-energy heavy ion collisions
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Saturation domain
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Saturation domain

log(Q 2)

log(x -1)

ΛQCD

Bulk of particle production
at the LHC :

Pt < 3 GeV
-2 < Y < +2
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Nucleon at high energy

n Dilation of all internal time-scales of the nucleon
n Interactions among constituents now take place over

time-scales that are longer than the characteristic time-scale
of the probe
B the constituents behave as if they were free

n Many fluctuations live long enough to be seen by the probe.
The nucleon appears denser at high energy (it contains
more gluons)

n Pre-existing fluctuations are frozen over the time-scale of the
probe, and act as static sources of new partons
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Degrees of freedom and their interplay

McLerran, Venugopalan (1994), Iancu, Leonidov, McLerran (2001)

n Small-x modes have a large occupation number
B they are described by a classical color field Aµ,

that obeys Yang-Mills’s equation:

[Dν , F νµ] = Jµ

n The source term Jµ comes from the faster partons. The
large-x modes, slowed down by time dilation, are described
as frozen color sources ρ. Hence :

Jµ = δµ+δ(x−)ρ(~x⊥)

n The color sources ρ are random, and described by a
distribution functional Wx0

[ρ], with x0 the frontier between
“small-x” and “large-x”
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Calculation of observables
n In order to study the collisions of two hadrons, solve the

classical Yang-Mills equations in the presence of the
following current :

Jµ ≡ δµ+δ(x−) ρ1(~x⊥) + δµ−δ(x+) ρ2(~x⊥)

n Compute the observable O of interest in the background field
created by a configuration of the sources ρ1, ρ2. Note : the
sources are of order 1/g B this is a very non-linear problem

n Average over the sources ρ1, ρ2

〈O〉 =

Z
ˆ
Dρ1

˜ ˆ
Dρ2

˜
Wx1 [ρ1

˜
Wx2

ˆ
ρ2

˜
O[ρ1, ρ2

˜

n Note: in the rest of this talk, I’ll assume that the distributions
Wx[ρ] of sources are known
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Toy model

n From now on, we assume that j = j1 + j2, with j1 and j2 of
comparable strengths

n The sources can be as strong as 1/g in the saturated
regime: B corrections in (gj)n must be summed to all orders,
which makes the evaluation of physical quantities very
complicated – even at “leading order”

n To avoid encumbering the discussion with unessential
details, consider a scalar field theory with a φ3 coupling,
coupled to a source j(x) :

L ≡
1

2
(∂µφ) (∂µφ) −

1

2
m2φ2 −

g

3!
φ3 + jφ



Color Glass Condensate

Generalities

l Toy model

l Power counting

l Reduction formulas

l Vacuum-vacuum diagrams

l Generating function

l Interpretation of F(z)

Moments

Generating function

Towards kinetic theory

Summary

François Gelis – 2006 Strong and Electro-Weak Matter, BNL, May 2006 - p. 9

Counting the powers of g
n Consider a diagram with :

u E external lines
u I internal lines
u V vertices
u J sources
u L independent loops

n These numbers are related by :

3V + J = E + 2I

L = I − J + 1

n Therefore, the order of the diagram in g and j is :

gV jJ = gE+2(L−1)(gj)J

n After resummation of all the powers of gj, the order of a
diagram depends only on its number of loops and external
legs
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Reduction formulas

n Production of a single particle :

˙
~pout

˛
˛0in

¸
=

1

Z1/2

Z

d4x eip·x (�x+m2)
˙
0out

˛
˛φ(x)

˛
˛0in

¸

n Production of a two particles :
˙
~p~qout

˛
˛0in

¸
=

1

Z

Z

d4x d4y eiq·yeip·x

×(�x+m2)(�y+m2)
˙
0out

˛
˛Tφ(x)φ(y)

˛
˛0in

¸
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Vacuum-vacuum diagrams
n The perturbative expansion of these transition amplitude

generates vacuum-vacuum diagrams (i.e. disconnected
diagrams that do not have any external leg).
Their sum is not a pure phase

n The sum of all the vacuum-vacuum diagrams in
〈

0out

∣

∣0in

〉

is
the exponential of the sum of the connected ones

˙
0out

˛
˛0in

¸
= eiV [j]

n The perturbative expansion of iV [j] starts with :

+ + + + . . .1
2

1
6

1
8

1
8

Note : each graph Γ comes with a symmetry factor 1/SΓ

n Note : exp(iV [j]) can be seen as a generating functional :

˙
0out

˛
˛Tφ(x1) · · ·φ(xn)

˛
˛0in

¸
=

δ

iδj(x1)
· · ·

δ

iδj(xn)
eiV [j]
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Generating function

n The probability of producing exactly n particles is :

Pn =
1

n!

Z
d3~p1

(2π)32E1
· · ·

d3~pn

(2π)32En

˛
˛
˙
~p1 · · ·~pnout

˛
˛0in

¸˛
˛2

n Generating function : F (z) ≡
+∞
∑

n=0

Pn zn

n One can show that :

F (z) = ezD[j+,j−] eiV [j+] e−iV ∗[j−]
˛
˛
˛
j+=j−=j

with

D[j+, j−] ≡
1

Z

Z

x,y

G0
+−(x, y) (�x +m2)(�y +m2)

δ

δj+(x)

δ

δj−(y)

G0
+−(x, y) ≡

Z
d3~p

(2π)32Ep
eip·(x−y)
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Interpretation of F(z)
n exp(iV [j+]) is obtained with the usual Feynman rules :

u Propagator : G0
++(p) = i/(p2 −m2 + iε)

n exp(−iV ∗[j−]), is obtained with the conjugate rules :
u Propagator : G0

−−(p) = −i/(p2 −m2 − iε)

n Schwinger-Keldysh formalism :
u For each graph, assign a sign ε to each vertex or source, in all

the possible ways B 2V +J terms
u If the sign is + : vertex −ig and source +ij+
u If the sign is − : vertex +ig and source −ij−
u Connect the vertices ε and ε′ with the propagator G0

εε′

n The action of exp(D[j+, j−]) is to build the mixed diagrams

n The generating function has the following interpretation :

F (z) is the sum of all the Schwinger-Keldysh vacuum-vacuum diagrams,
in which each propagator of type +− or −+ is weighted by a factor z
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Why calculating Pn is hard

n Example : typical contribution to P11 :

n At tree level, all the disconnected graphs are of order 1/g2

B therefore, no truncation is possible for the leading order
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Calculation of the moments

n Start from :

F (z) =
∑

n Pnzn = ezD[j+,j−] eiV [j+] e−iV ∗[j−]
∣

∣

j+=j−=j

n The average multiplicity is given by :

˙
n

¸
= F ′(1) = D[j+, j−] eD[j+,j−]eiV [j+]e−iV ∗[j−]

| {z }

˛
˛
˛
˛
j+=j−=j

eiW [j+,j−]

n More explicitly, this reads :

˙
n

¸
=

1

Z

Z

x,y

G0
+−(x, y) (�x +m2)(�y +m2)

2

4
δiW

δj+(x)

δiW

δj−(y)
| {z }

+
δ2iW

δj+(x)δj−(y)
| {z }

3

5

Or, diagrammatically :
˙
n

¸
=

+

-
+ - +
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Leading Order

n At leading order – i.e. O(1/g2) – we need only tree
diagrams :

+

-
+ - + = + -∑

n For all the vertices except the two which are labelled
explicitly, we must sum over the indices +/−

n We must also sum over all the topologies for the tree
diagrams on the left and on the right of the G0

+− propagator

n By using repeatedly the relation
G0

++ − G0
+− = G0

−+ − G0
−− = G

R
, the only effect of the

summation over the +/− indices is to turn all the
propagators into retarded propagators
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Leading Order

n The sum of all 1-point tree diagrams made of retarded
propagators is the solution φ

R
of the classical equation of

motion
(�x +m2)φ

R
(x) +

g

2
φ2

R
(x) = j(x)

with a null retarded boundary condition

lim
x0→−∞

φ
R

(x) = 0 , lim
x0→−∞

∂0φ
R

(x) = 0

n Finally, one obtains :

Ep

d
˙
n

¸

d3~p

˛
˛
˛
˛
˛
LO

=
1

16π3

Z

x,y

eip·(x−y)(�x +m2)(�y +m2)φ
R
(x)φ

R
(y)
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Next to Leading Order

n There are two types of corrections at NLO :

+

-
-+

n They both contribute at order g0. For quark production, the
first type of NLO topologies would in fact be the leading
contribution

n One can show that, at NLO, the summation of all the diagrams
involved in

〈

n
〉

can be performed by solving the EOM for small
fluctuations on top of the classical field
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Gluon production

Krasnitz, Nara, Venugopalan (1999, 2001), Lappi (2003)

Ep

d
˙
ngluons

¸

d3~p
=

1

16π3

Z

x,y

eip·(x−y)
�x�y

˙
A(x)A(y)

¸

n At LO, one just needs to solve Yang-Mills equations, with
retarded boundary conditions :
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Gluon production

Krasnitz, Nara, Venugopalan (1999, 2001), Lappi (2003)

Ep

d
˙
ngluons

¸

d3~p
=

1

16π3

Z

x,y

eip·(x−y)
�x�y

˙
A(x)A(y)

¸

n At LO, one just needs to solve Yang-Mills equations, with
retarded boundary conditions :
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Gluon spectrum

n Gluon spectra on 2562 and 5122 transverse lattices:

0 1 2 3 4 5 6 7
~k/g

2µ

0

0.05

0.1

0.15

0.2

2~ k4 /(
g6 µ4 R

A
2 ) d

N
/d

2 k

u Lattice cutoff at large momentum
(they do not affect much the overall number of gluons)

u Important softening at small k⊥ compared to pQCD (saturation)
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Quark production

FG, Kajantie, Lappi (2004, 2005)

Ep

d
˙
nquarks

¸

d3~p
=

1

16π3

Z

x,y

eip·(x−y) /∂x/∂y

˙
ψ(x)ψ(y)

¸

n Dirac equation in the classical color field :
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Ep

d
˙
nquarks

¸
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1

16π3

Z

x,y
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Time dependence of quark production

0 0.05 0.1 0.15 0.2 0.25
τ [fm]

0
10

0
20

0
30

0
dN

 / 
dy

m = 60 MeV
m = 300 MeV
m = 600 MeV
m = 1.5 GeV
m = 300 MeV *
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Spectra for various quark masses

0 1 2 3 4
q̂ [GeV]

0
5×
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1×
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yd
2 q T

 [a
rb

itr
ar

y 
un

its
]

m = 60 MeV
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m = 3 GeV
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Gluon production at NLO (1/2)

FG, Lappi, Venugopalan (work in progress)

n A part of the NLO correction is very similar to quark
production : it involves the EOM for small field fluctuations on
top of the classical solution
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Gluon production at NLO (2/2)

n The other part is a 1-loop correction to the classical field
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Gluon production at NLO (2/2)

n The other part is a 1-loop correction to the classical field
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Introduction
n Let us pretend that we know the generating function F (z).

We could get the probability distribution as follows :

Pn =
1

2π

Z 2π

0

dθ e−inθ F (eiθ)

Note : this is trivial to evaluate numerically by a FFT :

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 0  500  1000  1500  2000

P n

n

Poisson distribution :   F(z) = exp( n (z-1))

Other F(z) with the same average
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Derivative of Ln(F(z))

n Reminder :

F (z) = ezD[j+,j−] eiV [j+] e−iV ∗[j−]

| {z }

˛
˛
˛
˛
j+=j−=j

eiW [z|j+,j−]

n By the method already used for the multiplicity, we get :

F ′(z)

F (z)
=

1

Z

Z

x,y

G0
+−(x, y) (�x +m2)(�y +m2)

2

4
δiW

δj+(x)

δiW

δj−(y)
| {z }

+
δ2iW

δj+(x)δj−(y)
| {z }

3

5

=
+

-
+ - +

n Note : the topologies involved are the same as in
〈

n
〉

, but
the Feynman rules are modified by :

G0
+− −→ z G0

+− , G0
−+ −→ z G0

−+
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Derivative of Ln(F(z))

n At leading order, we need only to calculate two objects,
φ+(z|x) and φ−(z|y), given as the sums of the 1-point
connected tree graphs :

φε(z|x) = ∑
trees
+/-

ε
x

n Note : these tree diagrams must be calculated with the
z-dependent modified Feynman rules

n One can show that these objects are also solutions of the
classical equation of motion :

(�x +m2)φ±(z|x) +
g

2
φ2
±(z|x) = j(x)
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F(z) from solutions of the EOM

n Write the fields φ±(z|x) as a superposition of plane waves :

φ+(z|x) ≡

Z
d3~p

(2π)32Ep

n

f
(+)
+ (x0, ~p)e−ip·x + f

(−)
+ (x0, ~p)eip·x

o

φ−(z|x) ≡

Z
d3~p

(2π)32Ep

n

f
(+)
− (x0, ~p)e−ip·x + f

(−)
− (x0, ~p)eip·x

o

n In terms of these coefficients, the boundary conditions are :

f
(+)
+ (−∞, ~p) = f

(−)
− (−∞, ~p) = 0

f
(+)
− (+∞, ~p) = z f

(+)
+ (+∞, ~p)

f
(−)
+ (+∞, ~p) = z f

(−)
− (+∞, ~p)

n Finally, at leading order, we obtain :

F (z)|
LO

= exp

zZ

1

dz′
Z

d3~p

(2π)32Ep

f
(+)
+ (+∞, ~p) f

(−)
− (+∞, ~p)
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Difficulties of the standard approach

n Reminder :
〈

n
〉

=
+

-
+ - +

n In principle, by calculating this to all orders, one would obtain
the full answer for the number of produced particles

n However, this is complicated by secular divergences :
B the terms that are dominant at large times are not the
same as those that dominate the physics at early times
B the organization in powers of the coupling is not very
relevant, because some higher order corrections may get
enhanced by powers of time

n The Dyson-Schwinger equations can resum these secular
divergences and make the result sensible. Under certain
approximations, they can be simplified into kinetic equations
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Alternate approach

n Consider an ensemble of particles on top of the fields :

G++(X, p) =
i

p2 −m2 + iε
+ 2πf(X, p)δ(p2 −m2)

n The distribution f that appears in the propagators is the
initial distribution of particles. Of course, by taking f = 0 (no
particles in the initial state) and by summing all the diagrams,
we get the same answer as before (with the same problems
related to secular divergences)

n By letting the distribution f evolve in time, we can resum the
secular terms

n Strategy :
u Write the Dyson-Schwinger equations
u Do a gradient approximation in order to turn them into a

Boltzmann equation
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Dyson-Schwinger equation

n Because of the external source, the 2-point function has a
connected and a disconnected part :

G(x, y) ≡ G
c(x, y)

| {z }
+ G

nc(x, y)
| {z }

connected disconnected

G
nc(x, y) =

˙
φ(x)

¸˙
φ(y)

¸

n Extract a mean-field term from the self-energy :

Σ(x, y) ≡ gΦ(x)δ(x− y) + Π(x, y)

n The connected part obeys :

ˆ
�x +m2 + gΦ(x)

˜
G

c(x, y) = −iδ(x− y)−

Z

d4u Π(x, u)G
c(u, y)



Color Glass Condensate

Generalities

Moments

Generating function

Towards kinetic theory

l Difficulties

l Alternate approach

l Dyson-Schwinger equation

l Boltzmann equation

Summary

François Gelis – 2006 Strong and Electro-Weak Matter, BNL, May 2006 - p. 33

Dyson-Schwinger equation

n Write the field expectation value in terms of an “effective
source” :

˙
φ(x)

¸
≡

Z

d4u G
c(x, u)S(u)

n The disconnected part obeys :

ˆ
�x+m2+gΦ(x)

˜
G

nc(x, y) = −iS(x)
˙
φ(y)

¸
−

Z

d4u Π(x, u) G
nc(u, y)

n Then, for the full 2-point function, we get :
ˆ
�x +m2 + gΦ(x)

˜
G(x, y) = −iδ(x− y)

−

Z

d4u
h

Π(x, u)G(u, y) + Π
S
(x, u)

| {z }
G

c(u, y)
i

source term : − iΠ
S
(x, y) ≡ S(x) S(y)
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Boltzmann equation

n Quasi-particle ansatz :

G−+(X, p) = (1 + f(X, p))ρ(X, p)

G+−(X, p) = f(X, p)ρ(X, p)

ρ(X, p) = G−+(X, p) − G+−(X, p)

n Wigner transform and gradient expansion :
ˆ
�x +m2 + gΦ(x)

˜
G(x, y) = −iδ(x− y)

−

Z

d4u
h

Π(x, u)G(u, y) + Π
S
(x, u)G

c(u, y)
i

2p · ∂
X
f(X, p) + g∂

X
Φ(X) · ∂pf(X, p)

= (1 + f(X, p))Π+−(X, p) − f(X, p)Π−+(X, p) + Π
S
(X, p)

B Boltzmann equation with a source term
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Summary and perspectives
n In a field theory coupled to strong time-dependent sources,

the problem of particle production is non-perturbative, and
requires to sum an infinity of diagrams at each order

n Leading Order :
u The multiplicity can be found from retarded solutions of the

classical EOM
u The generating function requires solutions of the classical EOM

with more complicated boundary conditions
n Next to Leading order : one needs the retarded solution of the

equation for small field fluctuations in order to calculate the
multiplicity

n One can obtain a Boltzmann equation that interpolates
between a regime dominated by fields and a regime
dominated by particles

n Extensions :
u Rapidity gaps, diffraction
u Evolution equation (à la BK) for the generating function
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Calculation of the moments
n The same method can be applied to the calculation of the

variance :

˙
n2¸

−
˙
n

¸2
=

d2

dx2
ln(F (ex))x=0

=
ˆ
D[j+, j−] + D2[j+, j−]

˜
eiV [j+,j−]

˛
˛
˛

j+=j
−

=j

connected

n In terms of diagrams :

˙
n2¸

−
˙
n

¸2
=

˙
n

¸

+

-

+

-
+

- +

+

-
+ 2

- +

+

-
+ 2

- +

- +
+

- +

+ -
+

+ - - +
+

- + + -
+

- + - +
+ 2
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Number of independent subdiagrams
n Let us call br the sum of all the vacuum-vacuum diagrams in

the Schwinger-Keldysh formalism with r cut lines. We have

ln(F (z)) =

+∞X

r=1

br (zr − 1)

n From this form of the generating function, one gets :

Pn =

nX

p=0

e−
P

r br
1

p!

X

α1+···+αp=n

bα1 · · · bαn

| {z }

probability of producing n particles in p cut subdiagrams

n Summing on n, we get the probability of p cut subdiagrams :

Rp =
1

p!

"
∞X

r=1

br

#p

e−
P

r br

Note : this is a Poisson distribution of average
˙
Ndiagrams

¸
=

P

r br
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Survival probability

n One interesting quantity to consider is the probability of not
producing anything :

P0 = exp
“

−
X

r

br
”

= exp
`
−

˙
Ndiagrams

¸´

n Notes :
u When defined over a restricted part of phase-space, this quantity

is the survival probability for a void in this region of phase-space

u If the dynamics of the theory allows to have many particles
produced in the same subdiagram, it is much larger than the
exp(−

˙
n

¸
) one would naively predict from Poisson formula

u Calculating the survival probability is equivalent to calculating
F (0)
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Rapidity gaps

n Proton-proton :

u Thanks to the pomeron, many particles can be produced
from the same subdiagram in large rapidity intervals

u Low density of sources B few pomerons

u The probability of rapidity gaps is not very suppressed,
and is largely independent of the gap (position and size)
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Rapidity gaps

n Proton-nucleus :

u Large density of sources per unit of transverse area in the
nucleus B pomeron branchings

u Thanks of these branchings, the number of disconnected
subdiagrams does not increase much B rapidity gaps
are not much suppressed compared to proton-proton
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Rapidity gaps

n Nucleus-nucleus :

u Large density of pomerons

u The probability of rapidity gaps is low

u Diffraction occurs only in peripheral collisions
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